If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16T^2+1776
We move all terms to the left:
-(-16T^2+1776)=0
We get rid of parentheses
16T^2-1776=0
a = 16; b = 0; c = -1776;
Δ = b2-4ac
Δ = 02-4·16·(-1776)
Δ = 113664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{113664}=\sqrt{1024*111}=\sqrt{1024}*\sqrt{111}=32\sqrt{111}$$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{111}}{2*16}=\frac{0-32\sqrt{111}}{32} =-\frac{32\sqrt{111}}{32} =-\sqrt{111} $$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{111}}{2*16}=\frac{0+32\sqrt{111}}{32} =\frac{32\sqrt{111}}{32} =\sqrt{111} $
| 6x−7=4x−5 | | 3x+5+2x+8+123=180 | | 12−2p=56 | | -3=b/7 | | .06v^2+1.1v=250 | | -(x+5)=-13 | | 2x+2=-5x-19/8 | | 4(x+2)+3(x-3)-35=6 | | 150x-1/2=120x-1/4 | | 2j−5=1 | | -3.4=u/8+9.4 | | -9=r/3 | | -17+61=-4(x+3) | | 75=3(6n-6) | | 3x+1={2x+8 | | 3(x-2)^2=2(x-4) | | H(t)=-16t^2+1776 | | -x+54=215 | | 14=26+t | | 13=28+7x | | 5=3z-20 | | 1/2(6x-4)=1/3(12x+9) | | 4x-4=16+8x | | 3x-8+2x+9=451 | | -6(x-5)-8=22 | | -13=-(x+5) | | 68=3x-13 | | 3b-14=12 | | (n-7)=(3n+1) | | -x+254=215 | | -2a+7=21 | | 4(3x+2)+7x=19x+8 |